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‘Results are represented of an experimental computational determination .of the
temperature dependence of the .effective heat conduction coefficient of a glass
plastic and analysis is given of the reliability of the data obtained by using
computational experiments and planning of the temperature measurements.

Carefully analyzing and giving a foundation to the reliability of the results being ob-
tained is necessary when conducting experimental—computational thermophysical investigations
based on application of the inverse problem method to process the experimental information.
To 'this .end a combination of computational experiments simulating the different conditions
for performing the investigations (see [1], say) and the optimal planning of ‘the temperature
measurements can be used wherein the quality of the measuring scheme [2] realized in the
experiments can be exposed. Application of the approach mentioned is examined in this paper
in an .analysis of the data of nonstationary thermophysical experiments conducted to deter-
mine the temperature dependence of the effective heat conduction coefficient of a glass-
plastic on a silicon organic binder from the solution of the inverse problem.

The tests were -performed in a wind tunnel with the following gas flow parameters:
Py = 5-10% Pa, T, = 3590-4340 K, M = 6.5. The model in the form .of a slab with the speci-
men being investigated arranged therein was placed in the working chamber at .a 20° angle to
the incoming flow. Thermocouples VR5/20 of 0.2-mm diameter, soldered at the butt, were
mounted in the specimens executed in the shape of 20-mm-thick rectangular plates of 128 x
170 mm at a different depth from the surface being heated. The microcomputer "Elektronika
DZ-28" and the automatic potentiometer KSP-4 :were used to process the primary information
from the thermocouples. The error in measuring the temperature was 1.5-27 at interior points
of the specimens.

‘Experimental data obtained for the two specimens are analyzed below. Six thermocouples
were mounted in the first at the following distances from the surface being heated: 4, =
2.8 mm; d, = 5.6 mm; d; = 8.4 mm; d, = 11.2 mm; dg = 17.2 mm; and 4 = 20 mm. Four thermo-
couples were in the second specimen at d; = 2.8 mm; d, = 8.4 mm; d3 = 11.2 mm; and 4, = 20.5
mm. The thermocouple location was determined by using x-ray diffraction. The diagram of
the thermal sensor location in the specimens is displayed in Fig. 1. The thermal diagrams
of the experiments are presented in Fig. 2. The known dependence of the bulk specific heat
of a material on temperature C(T) is represented in Fig. 3a.
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Fig. 1. Diagram .of the thermal sensor arrangement
in the specimens.
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Fig. 2. Results of measuring the
specimen temperature: 1) specimen
No. 1; 2) specimen No. 2; 3) X =0
mm; 4) 2.8; 5) 5.6;3 6) 8.4; 7)
l4.4; 8) 17.2; 9) 17.7. T, C; 1,
sec.
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The inverse problem was solved by using the algorithm proposed in [3] when processing
the experimental data to determine the temperature dependence of the heat conduction coef-
ficient. The desired function A(T) was here represented in the form of a cubic B-spline
with '"natural" boundary conditions

m
M(T) == 2 By (T), X (Trypn) = 2" (Tipag) = 0; (1)
fn

where the minimal Tpi, and maximal Tpayx values of the temperatures were determined from the
given boundary conditions of the first kind shaped by readings of the first and last thermo-
couple. A search for the vector of the coefficients X = {Ay},™ in (1) was realized in solv-
ing the inverse problem by minimization by the method of conjugate gradients of the rms
functional of the residual
AN T{n
J o z‘ l\ IT (/\1, T)_[ri(r)]‘sz, (2)

PR

where N is the quantity of internal thermocouples, and T(xj, t), fi(1) are the computed and
measured values of the temperature at the site of the i-th thermocouple installation.

The computational experiments show [1] that the accuracy of the inverse problem solu-
tion is determined to a considerable extent by the scheme used for the temperature measure-
ments. Independence of the results of the solution from the magnitude of the initial ap-
proximation to the desired parameters A given a priori in the iteration algorithm can be
the criterion for correctness of the selection of the measuring scheme. The results of re-
storing the dependence A(T) for different initial approximations are represented in Fig. 3
for both the specimens under consideration. It is seen that the results of solving the in-
verse problem obtained for the first specimen are independent of the magnitude of the initial
approximation while this dependence is quite essential for the second specimen. It is re-
markable that the functional (2) achieved approximately identical values, close to the mag-
nitude of the integral measurement error in all cases during its minimization.

It follows from the analysis performed that reliable values of the heat conduction co-
efficient are obtained just in the first of the two experiments under consideration. Because
of the nearness of the mutual specimen thicknesses and the laws of temperature variation at
the point X = 0 over time for both experiments, such a situation is due to the presence of
the thermocouple at the point X; = 2.8 mm in the first specimen.

A parametric analysis of the accuracy of the solution of the inverse problem under con-
sideration was performed to confirm the results and deductions obtained by the method of a
computational experiment. The quantity of internal thermal sensors and their arrangement
in the specimen under investigation was variated here.

The simulation was realized in the following sequence. Boundary conditions of the first
kind from experiment No. 1 were given on the specimen boundaries. Then by using the thermo-
physical characteristics (Fig. 3a) the direct problem of heat conduction was solved numeri-
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Fig. 3. Dependences A(T) obtained during processing of
experimental data for specimens No. 1 (a) and No. 2 éb;
and assignment of different initial approximations A\%J:
1 ) = 0.2 W/ (mrdeg); 2) 0.4; 3) 0,63 4) 0.8; dependence
c(T). C, J/(m3-deg); T, °C.

cally and the time-varying values of the temperature was computed at several interior points
of the specimen. These values were utilized as initial data for solving for the solution

of the model inverse problem to restore the temperature dependence of the heat conduction
coefficient not known at this stage of the computations. Single-valued solvability of the
inverse problem being analyzed can be achieved when performing measurements at one interior
point of the specimen [5]. Starting from this, it was assumed N 2 1. The methodological
error of the inverse problem solution was estimated from the formula

&, = (max | A (T) — 4 %2t () AN ) T € (Thme Tmegh (3)

where A(T) and A®XaCL(T) are the restored and the "exact" values of the heat conduction co-
efficients.

The dependence of €) on the installation coordinates for one sensor is shown in Fig. 4.
It is seen that high accuracy of the inverse problem solution with a methodological error
less than 17 is assured only in the case of thermal sensor installation in a sufficiently
narrow domain extending ~4 mm near the surface being heated.

Simulation taking account of the redundant "experimental" information was performed
for two thermal sensors. Variation of the installation coordinates of the second sensor was
realized for different fixed locations of the first. The errors in restoring the heat con-
duction coefficient obtained here are represented in Fig. 4., Computations were performed
for the identical initial approximation, equal to 0.2 W/{(m-deg), Data of the simulation
show that the main influence on the accuracy of solving the inverse problem being analyzed
is exerted by the location of the first sensor, which should be in a zone relatively close
to the surface being heated. The change in second sensor location here has weak influence
on the accuracy of the inverse problem solution within sufficiently broad limits.

Then by using the algorithm elucidated in {6], planning of the temperature measurements
was carried out. The same initial data as in the solution of the model inverse problem were
utilized as a priori information here.

Solution of the extremal problem
g, = arg max det [M (E, A)] (4)

was realized for the locally optimal measurement plan £, = {N, X}, X = {Xi}lN, where M(f,
A) is the information matrix.

Computation of the information matrix was performed by using values of the response
functions Ox(x, 1) = 3T(x, 1)/3Ay determined from the solutions of the boundary value prob-
lems obtained by differentiating the conditions of the direct heat conduction problem with
respect to Agy. The set of allowable plans Z was formed on the basis of results of the
uniqueness theorem for the inverse problem under consideration [5] and was represented as
follows:

E={(N, X):N>1, 0<x,<b, i=T1, N}

288



Ea
g}
92 /’ +— 3
°o— 4
a— 5
a1 v v—§
o—7
o Yy
0 4 8 2 X,
Fig. 4 Fig. 5

Fig. 4. Dependence of the error €) on the installation coor-
dinates of one (1) or two thermal sensors: 2) X; = 1.0 mm;
3) 2.0; 4) 2.6; 5) 4.0; 6) 4.5; 7) 5.0. X,, mm.

Fig. 5. Dependence of the planning criterion (detM) on ther-
mal sensor installation coordinates: 1) N=1; 2) N=2 -1
sect.; 3) N = 2 — 11 sect.

The search for the optimal plan (4) was constructed sequentially. Starting with N =
1 and increasing the amount of thermal sensors by 1, a selection of the optimal vector of

the measurement point coordinates X was realized for each N from the condition

X = argmaxdet [V (X, X)), 0<X;<<b, i==1, V.

Results of solving the optimal location selection problem are represented in Fig. 5
for one and two thermal sensors, where the change in the planning criterion is illustrated
as a function of the sensor installation coordinates. For two sensors, sections by planes
drawn through the point of the maximal value of the criterion in parallel to the coordinate
planes are shown here for the surface det M(X,, X,).

The most important outcome from the data obtained for the measurement planning is that
one sensor should absolutely be installed in a sufficiently narrow domain near the heating
boundary X = 0 to assure high reliability of the inverse problem solution in the experiment
being analyzed. A further increase in the number of thermal sensors showed that two sensors
are completely sufficient in this experiment since the placement of the second and successive
sensors at one point is optimal for N > 2. The results obtained are in complete conformity
with the data of computational experiments performed earlier.

Planning the measurements for experiment No. 2 results in analogous results. It is
thereby proved that it is impossible to obtain reliable data about the heat conduction co-
efficient in the second experiment by using the described algorithmic support. This is a
consequence of the absence of thermocouples in the X = 2.8 mm area in the second experiment.

The investigations performed show that application of computational experiments and
optimal measurement planning is an inherent part of the complex procedure for the identifi-
cation of heat transfer processes and permits approaching the question of reliability of
the results being obtained validly.

NOTATION

Py, Ty, M, stagnation pressure, stagnation temperature, and Mach criterion of the in-
coming stream; d, thermocouple distance from the surface being heated; T, the temperature;
C, volume specific heat; A, heat conduction; X, a coordinate; 1, time; N, number of thermal
sensors; and b, specimen thickness.
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DETERMINATION OF THE SOURCE IN QUASILINEAR EQUATIONS
OF THE PARABOLIC TYPE

V. M. Volkov UDC 517.946

The uniqueness theorem is proven for the solution of the two-dimensional in-
verse prablem for an unknown source function dependent on the solution of the
direct problem and on the spatial coordinate.

We consider the heat equation in the region D(T, X,) = {x, < x < », 0 < t ¢ T}

U=t 4, D)+ fx, 0 (1)
subject to the boundary and initial conditions
Uty == 0, xo L x << o0, (2)
ou P
o |, T OSIST (3)

plus the following condition on the solption at the point x = X4
Uemr, = $ (1, %)), OSET. (4)

We assume that the parameter X, could range from zero to infinity. The problem is to
determine the function q(u, x) for a given function w(t, x,).

THEOREM. Let the functions f(x, t) and y(t, x,) satisfy the conditions f(x, t) € c[o,
=) x [0, T1), ¥(t, x,) € C1>°([0, T} x [0, »)) and y'(t, xo) 2 ¥ for t € [0, T}, where y is
a sufficiently large positive number. In addition, the consistency condition ¢(0, x,) = 0
is assumed to be satisfied.

Then the solution q(u, x)} of the inverse problem is unique in the class of functions
q(u, x) € C1s?! ((—, =) x [0, =)) satisfying the conditions
=90, <l DY %) — (9 ¢, xp), x), XE€lxp ), tE[N, T,

and for two arbitrary functions of this class q,(u, x) and qz(u, x) their difference q(u,
x) = q,(u, x) ~ q,(u, x) satisfies the inequality
o My, maxgo,eny <M M, (TR RaIX[0, =)

for a certain value of a € (0, 1).
Proof. The following maximum principle holds for the assumptions of the theorem.

Maximum Principle. If the conditions of the theorem are satisfied, then u(x, t) €
CZ:1((0, =) x (0, TI) n C({0, =) x {0, T]) 0 Lu((0, =) x (0, T]) and the solution of the
problem (1), (2), (4) satisfies the condition 0 5 u(x, t) g w(t, Xq), (x, t) € D(T, x,).

Furthermore suppose that there exist two solutions of the problem (1)-(4): {u,(x, t),
q1{u;, x)} and {u,(x, t), q2(uz, x)}. Then, putting x = x, in (1), we obtain the relation

Q(\P(t, xﬂ)v xo) = W; (tv xo)"’f(xo» t)‘“xx|x=x., (5)
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